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The numerical calculation of two-dimensional rotational flow at large Reynolds number 
is considered. The method of replacing a continuous distribution of vorticity by a finite 
number, N, of discrete vortices is examined, where the vortices move under their mutually 
induced velocities plus a random component to simulate effects of viscosity. The accuracy 
of the method is studied by comparison with the exact solution for the decay of a circular 
vortex. It is found, and analytical arguments are produced in support, that the quantitative 
error is significant unless N is large compared with a characteristic Reynolds number. The 
mutually induced velocities are calculated by both direct summation and by the “cloud in 
cell” technique. The latter method is found to produce comparable error and to be much 
faster. 

1. INTRODUCTION 

Molecular transport processes in a gas, which lead to the diffusion of mass and 
momentum, are due to the random motion of the molecules superposed on the mean 
motion of the fluid. The effects of diffusion or viscosity can therefore be studied by 
adding, to the continuum velocity of a fluid particle, a random component which 
describes the Brownian motion of the molecules. If n(x, t) is the continuum velocity 
field, r(t) is the position of a fluid particle, and v is the diffusivity, we consider the 
equation 

www = 4% t) + w(t), 
where w is a stationary random function of time with the property that 

<w,(t) Iv&‘)> = 2vR(t - t’) s,, ) (2) 

where 

s mR(7)d7= 1. (3) 0 

This idea is an obvious extension of the well-known concept that the diffusion equation 
is equivalent to a random walk. Saffman [l, 2,3] used it to study the effects of mole- 
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cular diffusion on the transport of a passive scalar in flow through porous media and 
in homogeneous and inhomogeneous tbrbulent flow. It is to be noted that although 
the original physical justification of the idea was based on the gaseous structure of 
the fluid, the fact that the results involve only macroscopic properties of the fluid 
implies that they apply equally well to liquids. 

In 1969, Professor D. W. Moore pointed out in a private communication that, 
since two-dimensional inviscid flow of an incompressible fluid can be modeled by 
following discrete line vortices which move with the fluid, viscous effects could be 
incorporated by adding a random walk component to the displacement of the 
of the vortices. In unbounded fluid, the velocity of each vortex would be supposed 
to be given by (l), where u is the velocity induced by all other vortices. Professor 
Moore and one of us (P.G.S.) tested the idea by using 50 discrete vortices to approx- 
imate the viscous decay of an initially uniform rectilinear vortex of circular cross 
section, for which a simple exact solution exists. The agreement was found to be 
poor; so bad, in fact, that the method was abandoned without further study. It was 
realized that the error would be reduced by increasing the number of vortices, N. 
However, standard results suggested that the decrease is like N-1/2 and since the 
computing time increases like N2 better calculations were prohibitively expensive. 

Subsequently, the method was presented by Chorin [4] and applied by him to the 
study of flow past a circular cylinder for Reynolds numbers from 100 to over 10,000. 
This requires two extensions of the basic idea. First, image vortices must be created 
(or more generally, a Green’s function has to be introduced) to satisfy the zero normal 
velocity kinematic requirement at the solid surface. Second, new vortices have to be 
created at the surface at a rate governed by the need to satisfy the no-slip boundary 
condition (see [5]). Chorin and others [6] have applied the method to a variety of 
two-dimensional flows and the idea has attracted much attention. Since none of the 
results can be compared with exact solutions, and a priori error estimates have not 
been obtained, the reliability of the method is open to questi0n.l Comparison with 
gross experimental features, such as drag, is not conclusive, and in any case the real 
flows are turbulent, and therefore three dimensional, at large Reynolds number. 
Moreover, one must distinguish between a method to model turbulent flow and a 
method to approximate an exactly two-dimensional flow. 

There are also uncertainties in the method. For numerical purposes it is necessary 
to approximate the velocity field of a line vortex, which is singular at the vortex 
itself, by that of a vortex of fmite cross section. The flow fields of vortices of finite 
cross section cause deformations of the cores, where in general the larger the core 
size the greater is the deformation, and the neglect of this effect poses unresolved 
questions. 

It was therefore decided to re-examine the problem studied in 1969 by Moore and 

1 After the work of the present paper was completed, Dr. W. Ashurst of Sandia Laboratories, 
Livermore, told us of his calculation to check the method by studying the Rayleigh problem of the 
boundary layer growth en a flat plate set impulsively in motion, for which an exact solution is known. 
It appears that good agreement can be found, but the results are sensitive to the way in which vorticity 
is introduced at the walls. 
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SatIman, of the decay of a single vortex of finite size, but now to use 1000 vortices 
to investigate the accuracy of the approach. This problem has the advantage that it is 
an unbounded flow and so the complications and further doubts occasioned by the 
presence of solid walls are avoided. The method of calculation and results will be 
presented in the following sections. One would like to have done more than was 
actually done (for instance, ensemble averages over initial conditions are desirable), 
but the present results took about 8 hours on an IBM 370/158 and exhausted our 
resources. However, we think that the evidence is sufficient to support a claim that 
uncritical use may lead to significant error. We shall also present some simple analysis 
in support of the belief. 

2. THE CALCULATION 

We take N line vortices, the ith vortex having position (xi, ri) and strength K$ . 

The equation of motion (1) becomes 

where 

H = &- ,f .f’ K~K~ log rii . 
Z==l pl 

The prime indicates that i = j is excluded from the sum, and 

rij = [(xi - xj)” + ( yi - ~~)~]l/~. 

t u’gi 9 (4) 

(5) 

(6) 

The ensemble average of the solution of (4) and (5), over the white noise w, gives a 
solution of the Navier-Stokes equations for the initial condition of N line vortices 
at the points x$(O) = xio, v,(O) = yio. We speculate (but have not proved) that a 
further ensemble average over random initial positions, (xio, y(O), of the line vortices 
will give a solution of the Navier-Stokes equations for an initially continuous 
distribution. 

For inviscid flow, His an invariant of the motion. The linear and angular impulses, 
given, respectively, by 

Ia= i KiYi, 1, = - f K&i, d = - 4 5 K&t + yi2), (7) 
i=l i=l i=l 

are also invariant if no net force or couple is applied over boundary walls; this is the 
case if the fluid is unbounded. In a viscous unbounded fluid, the linear impulse is 
invariant but the angular impulse changes with time. The square of the radius of 
gyration A = -2A/T/rgrows like 4vt, where r = EL, Ki is of course invariant. 
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When vortices are close together, the inviscid velocities become very large.and for 
numerical reasons it is advisable to replace the singular velocity distribution by one 
which gives finite velocities as rij -+ 0. Thus, we make the approximation that 

where the function F is chosen in some ad hoc manner. We shall take 

The value of 6 will be discussed below. Chorin [4] replaced (10) by F(f) = t/S, 
with 2+3 equal to the spacing between the new vortices created at the walls to satisfy 
the no-slip boundary condition. Kuwahara and Takami [7] took 

F(t) = (l/5)(1 - e-eZ/4vt). (11) 

Since vortices of finite size deform when they approach too closely, no approach is 
exact, and a priori error estimates are unknown. The choice of F has no effect on the 
existence of the invariants. 

To integrate (4), we must replace it by a finite difference approximation. Our 
procedure is to integrate the hydrodynamic part for a time step dt and then add a 
random displacement. Specifically, we take 

dxi = xi(t + At) - xi(t) = - + j-““’ F dt + h (ci - $ ; &), (12) z t t 3=1 

4, = Yitt + 4 - yitt) = $ j-tt+At g dt + A (qi - ; 3$1 Q). (13) 

The ci , vi are independent, Gaussian, random numbers, with zero mean and unit 
variance. The average is subtracted from the random displacements to ensure that 
the linear impulse remains constant, or equivalently that the centroid of the vortices 
is fixed. The variation of computed impulse is then a measure of the error. 

The integral is evaluated by modified Euler (also known as Huen’s method), i.e., 

s t+At 

dy, t) dt + tWWz(y(0, t) + g(W + 4 t + 41, 
t 

(14) 
PO + At) = y(t) + fit g(ytt), t>- 

Using this scheme the (exactly constant) angular momentum of a pair of line vortices 
grows as (At)“, while it grows as (A t)e if Euler integration is used. 
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The quantity h is chosen to ensure that the noise ensemble averaged angular 
momentum grows at the correct rate. It is easily shown that 

The value of 6 was chosen so that the maximum displacement of a vortex during 
one time step was less than the average separation of the vortices. For N vortices 
in a circle of radius R,, , the average separation is (rrRo2/N)‘J2. At separation 8, the 
displacement in time step dt is of the order (~/2&) dt. Thus we set 

(16) 

We used N vortices of equal strength K to represent the single vortex of initial 
radius R, , strength r = KN, and uniform vorticity. The vortices were placed at 
random in the initial circle, for the reasons given after Eq. (4). The initial rotation 
time of the vortex is 

T = 43r2R02/l-‘. (17) 

Three calculations were done with the same initial conditions: (i) pure hydro- 
dynamics, v = 0; (ii) pure diffusion, K = 0; (iii) hydrodynamics plus diffusion. 

The value of v was chosen so that the appropriate Reynolds number, Re = I’/v, 

say, was 2000~. Computations were done with N = 1000 and N = 50. In practice 
the normalization employed put v = 1, R, = 1, T = 4n2/2000n = r/500. 

The time step was chosen so that the change in angular momentum, A, due to 
numerical error was not more than 1 % of the effect that was to be calculated. It was 
found that when 

dt = T/100, (18) 

the change in A was less than 1 % of 4vt and the linear impulses were constant to 
1 part in 1016. All calculations were carried out in double precision on an IBM 370/158. 
With this value of d t, 8 is 1/5Oth of the average separation, and is considerably smaller 
than the value employed by others. We believe that 6 should be as small as possible, 
consistent with numerical accuracy, in order to model continuous solutions of the 
Navier-Stokes equations, but there is no hard evidence on this matter and the question 
is open. In any event, the analysis of Section 4 suggests that our present conclusions 
do not depend on the value of 6. 

3. RESULTS 

Figure 1 shows A as a function of t/T for cases (ii) and (iii) with N = 50 
and N = 1000, respectively. The exact solution, A = A, + 4ut, is also shown. 
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The integration time is 3T. After three rotations, the relative error 

E = (A - A, - 4vt)/4vt, 

which is shown in Fig. 2, is about 20 % for N = 50 and 10 ‘A for N = 1000. Over one 
rotation the relative error is much larger. It can be seen from Fig. 2 that the relative 
error with N = 50 is 224 times larger than the corresponding error with N = 1000, 
which is consistent with the belief that the error should behave like N-1/2. 

I 0 I 2 -3 
t /T  

FIG. 1. Random values of A for the pure diffusion of N vortices originally inside a circle. Results 
are shown for pure diffusion and hydrodynamic motion with diffusion: (i) N = 50; (ii) N = 1000. 
The straight line is the exact result. 

-3.0 
FIG. 2. Relative error vs r (t < 3T) for hydrodynamic motion with diffusion N = 50, IOOO. 

Also shown is the corresponding standard deviation U(S) as given by Es. (30). 

The size of the error for N = 1000 is surprisingly large, and it was therefore decided 
to undertake some analysis to try and check the results. This is described in the next 
section. 
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4. ANALYSIS 

Consider the case of pure diffusion. Let ~~9, yip be the coordinates of the ith vortex 
after p time steps, and tip, Q’ the random variables entering at the pth step. Then 

xi* = $1 + x (rip - (UN 5 %i”), 
i=l 

(19) 

Yip = YP1 + h ( 7jip - (I/N) ; qj9 ) 
j=l 1 

where h is given by (15). Henceforth, for simplicity we neglect the centroid correction 
term; it is not hard to see that this is an O(N-l) effect in the analysis. Then 

Xi” = xi0 + he, yip = yio + A+, (20) 

where 0 and + are normally distributed random variables with 

E(e) = 0, m2> = P, E(04) = 6p2 - 3p, (21) 

where E denotes expected value, and the same results hold for #. Note that 

p = t/At = 2vt/h2, (22) 

neglecting terms O(N-l). 
Now 

A9 = (l/N) 5 [(x# + (JJ+j. 
Z=l 

Since 

E((x~~)~) = (xso)” + h2E(82), 

(23) 

(24) 
E((JG*)~) = h”)2 + A2E(#‘), 

it follows that 

E(Ap) = A0 + 2Pp = A0 + ht. (25) 

Thus the expected value of the angular momentum for the N vortices grows at the 
same rate that it does for the continuous distribution of vorticity which they 
model. 

The order of magnitude of the error in one realization of the flow will be given by 
the standard deviation of A* about its expected value. 

. 
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This is found by calculating the expectation of (AP)~. A calculation shows that 

E((x2’)‘)3 = (x:)~ + 6X2p(x:) + X4(6p2 - 3p), (26) 

~~WW)z) = (xiox$)" + A2p((~io)2 + (xj"yj + A4p2, (27) 

and similarly for yip. 
Since 

(Aq2 = (l/N3 : {(Xi”)” + (pq4 + 2wJJi92} 
i=l 

+ (l/N2) 5 5 KXi"Xj">" + (Yi"yp)2 + wi~yj92}, 
i-1 i=l 

(28) 

a straightforward but tedious calculation gives 

var(A,p) = E((A,~)z) - [E(AVP)]2 = 
2Pp2 

q A0 + 7 (5 - ;,, (29) 

where the su%x v refers to the fact that the result is for pure diffusion. Hence, the 
standard deviation of the relative error E is given by 

(30) 

Thus for the error to be small it is not sufficient for N1/2 > 1, but it is necessary 
that 

N1j2 > (g,““. (31) 

Since A0/2v = rT/16 v2v, condition (31) can be expressed as 

&$I2 T 112 
N112 > 47T (T) . (32) 

Thus the larger the Reynolds number, the greater must be the number of vortices if 
the effects of viscosity are to be correctly described. 

This analysis is for pure diffusion. Let us now consider the case of hydrodynamics 
plus diffusion. An exact analysis cannot now be done, but the following discussion 
makes plausible the conclusion that the error is not less than that for pure diffusion. 

We have 

xi * = x;-’ + Ax,’ + h&‘, (33) 
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where again the correction to keep the centroid fixed is neglected, and Axp denotes 
the hydrodynamic contribution to the displacement. Then 

(xi”)’ = (x:-l + Ax,“)” + 2&“(x;-l + Axi’) + A”(&“)“. (34) 

The hydrodynamics conserves angular momentum, to within a neglegible numerical 
error; hence summing (34) over i and adding the corresponding term for yip, 

AY = Ap-l + (X2/N) 5 [(Q)” + (QP)~] 
i=l 

+ @VW f G’(xT-’ + hi’) + $(YP-~ + Ayi”)). (35) 
i=l 

Now 

xiq = x: + i Axir + h i cir. 
S-1 7=1 

We deduce from (35) that 

Ap = A,P + HP, (37) 

where A,“, the value due to pure diffusion, can be written as 

A,” = A0 + (AZ/N) f 5 [(ci”)’ + (73iQ121 + C2VW 5 2 [5iQxio 
g=1 i=l g=1 i=l 

+ (2h2/N) i F '2 [5iQ5i' + ~iq~ir]9 
g=li=l r=l 

and HP, the contribution of the hydrodynamic interaction, is given by 

HP = (2h/N) f 5 i {@ Axi + vi* Ay,‘}. 
9=1 i=l +=1 

Clearly, 

E(HP) = 0, 

+ 

(36) 

rliQYiol 

(38) 

(39) 

(40) 

since AxiT for r < q is independent of &Q. To estimate the standard deviation of HP, 
the variables 

must be considered. For the conditions of our calculations, the displacement due to 



LARGE REYNOLDS NUMBER FLOW 389 

the noise is small compared with the displacement due to the hydrodynamics. After 
three rotations, the change in radius is a small fraction of the original value. Thus 

E dxi+ w  i Llyir M min (& fit, R,). 
r=1 T=l 

Then for t < T, 

(41) 

(42) 

and for t > T, 

HP = g i 5 (&” + qtQ) & . (43) 
p=l i=l 

In the former case, after some rearranging, 

var(P) 
167~~ t 2 h2pAo =- - 

( ) 3 T N ’ (44) 

and in the latter case, 

var(H*) = 16X2pAo/N. (45) 

If Cr=, dxi is dominated by hydrodynamics, the correlation between HP and A,P 
is small, as can be seen by inspection of the terms that arise when (38) and (39) are 
multiplied together. Thus var(A) is obtained by adding together (29), (44), and (45). 
The interaction value is thus at most a factor of two greater than for pure diffusion, 
and is the same for t < T. 

On Fig. 3, we have also plotted U(C) as given by Eq. (30) for N = 1000. The random 

3.0 
F 

FIG. 3. Relative error vs t (t < 3T) for pure diffusion and hydrodynamic motion with diffusion 
for N = 1000, using the method of Section 2 and the cloud in cell method. Also given is u(e). 

58112314-4 
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values are consistent with the calculated U(E). To check the ideas further, a long run 
of up to 19 rotation times was done with 50 vortices, and the results are shown in 
Fig. 4. 

FIG. 4. Relative error vs I (t < 19T) for pure diffusion and hydrodynamic motion with diffusion 
for N = 50. Also given is U(C). 

5. CLOUD IN CELL 

Since a large number of vortices is desirable to reduce the error, alternative and 
considerably faster ways of calculating the velocity of the vortices are required. 
A possible method is the “cloud in cell,” described, for example, by Christiansen [8]. 
For purposes of comparison, we present here results obtained for 1000 point vortices 
using this approach. 

The cloud in cell technique introduces a mesh and replaces each vortex in a cell 
by four contributions at the mesh points. A fast Poisson solver evaluates the stream 
function at each mesh point and interpolation gives the velocity at the original vortex, 
whose position is now updated. There is some choice in the interpolation methods 
by which the meshpoint contributions to the vorticity are evaluated and the velocity 
is calculated from the stream function, and in the method of updating the position. 
We have adopted the following procedure. 

The vortex core, initially of radius R, , is placed inside the rectangular region 
[a, b] x [c, d] which is covered by a uniform I x J net: 

xi = a + (i - 1) h, h = l/I, i= 

yj = c + (j - 1) k, k = l/J, j= 

1 z ,***, 

1 J ,*.., 

Using the usual five-point operator to approximate Poisson’s equation, relating the 
streamfunction, Y, to the vorticity, u, on the net (46) gives the difference equations 

(llh”){\y,+l.i - 2yi.i + Yi-l.j> + (l/k2Hy~,~+, - 2Yz~,, + uli,i-,> = -wi.j > 

i = 2,..., Z, j = 2,..., J. (47) 
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Here U,,j approximates Y(xi, yj) and wiei = w(xi, yj). On the boundary of the 
rectangular region 

Y(x, y) = -(l747f) ln(x2 + y”). (48) 

This is the exact boundary condition in the absence of diffusion. If the boundary of 
Ihe region is far enough away from the vortex core and the time for which the soluiton 
is computed is small then this is a good approximation. 

The solution, Yisr , of Eqs. (47) subject to the boundary conditions (48) is computed 
efficiently using standard fast Poisson solvers [9]. 

From the streamfunction ‘y,,, the velocity field (uisj , Q) is calculated using the 
centered difference approximations 

Ui.i = t1/2k)tyi,i+l - yi,j-l)~ 

vi,i = -tlPh)tyi+l.j - ‘iv,-1.i). 
(49) 

To obtain wi,j from the distribution of point vortices as well as to calculate the 
velocity at each vortex point from the velocity field (ui,? , Ui,j), bilinear interpolation 
or the method of area weighting is used. If the position of the nth vortex is 
X, = xi + ,9/z, yn = yj + ak 0 < 01, fl < 1 then the fraction of the total vorticity 
assigned to each of the four surrounding net points (xi, yj), (xi+l, yi), (xifl, yjfl), 
(xi, yj+l) is given by Fr = (1 - /3)(1 - ol), F, = /?(l - a), F3 = CL/~, F4 = (1 - /~)cx, 
respectively. To evaluate the velocity of the vortex at (x, , yJ the same area weighting 
gives 

and similar for u(x, , y,J. This method of interpolating has the advantage of leaving 
invariant the total circulation as well as the linear impulses x IC~X~ , C Ki yi within 
each cell. The error introduced in the angular impulse is second order in the grid size. 

In our calculation a = c = -2, b = d = 2, and I = J = 64. Since R, = 1 and 
1000 point vortices are used, this corresponds to a density of 1 vortex per cell within 
the core. This density is minimal if the vortex core is to be represented adequately. 

The point vortices are advanced in time and diffusion is incorporated, as described 
in Section 2. As in Section 2, dt = T/100. With this time step using cloud in cell 
together with modified Euler, it is estimated that the error in A is approximately 1.5 % 
of 4vt. 

The advantages of the method are that the number of computations is roughly 
linear in the number of vortices and mesh points. Thus many more vortices can be 
handled than in the method described in Section 2. Also, the finite size of the vortex 
is irrelevant, but it is replaced, in effect, by the cell size which has an effect on the 
computations that has not yet been clarified. 

Figure 3 shows results for N = 1000 and t up to 3T. The computation time required 
using the cloud in cell method was roughly & the time necessary using the method 
of Section 2. 
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